Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-Methyl-1-(prop-2-en-1-yl)quinoxalin-2(1*H*)-one

Youssef Ramli,^a Rachid Slimani,^b Hafid Zouihri,^c Saïd Lazar^b* and E. M. Essassi^d

^aLaboratoire Nationale de Contrôle des Médicaments, Direction du Médicament et de la Pharmacie, BP 6206, 10000 Rabat, Morocco, ^bLaboratoire de Biochimie, Environnement et Agroalimentaire (URAC 36), Faculté des Sciences et Techniques Mohammedia, Université Hassan II Mohammedia-Casablana, BP 146, 20800 Mohammedia, Morocco, ^cLaboratoires de Diffraction des Rayons X, Division UATRS, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco, and ^dLaboratoire de Chimie Organique Hétérocyclique, Université Mohammed, V-Agdal, BP 1014, Rabat, Morocco Correspondence e-mail: lazar_said@yahoo.fr

Received 11 June 2010; accepted 18 June 2010

Key indicators: single-crystal X-ray study; T = 296 K, P = 0.0 kPa; mean σ (C–C) = 0.002 Å; R factor = 0.051; wR factor = 0.151; data-to-parameter ratio = 18.5.

In the molecule of the title compound, $C_{12}H_{12}N_2O$, the quinoxaline ring is planar with an r.m.s. deviation of 0.007 (15) Å. The dihedral angle between the quinoxaline and propenyl planes is 82.1 (2)°. The crystal packing is stabilized by offset π - π stacking between the quinoxaline rings [centroid–centroid distance = 3.8832 (9) Å].

Related literature

For biological activity of quinoxaline derivatives, see: Kleim *et al.* (1995). For their antitumor, and antituberculous properties, see: Abasolo *et al.* (1987); Rodrigo *et al.* (2002). For the antifungal, herbicidal, antidyslipidemic and anti-oxidative activities of quinoxaline derivatives, see: Jampilek *et al.* (2005); Sashidhara *et al.* (2009); Watkins *et al.* (2009). For bond-length data, see: Allen *et al.* (1987).

Experimental

Crystal data C₁₂H₁₂N₂O

 $M_r = 200.24$

organic compounds

Monoclinic, $P2_1/c$	
a = 5.0722 (5) Å	
b = 13.4707 (13) Å	
c = 15.0507 (13) Å	
$\beta = 95.082 \ (5)^{\circ}$	
$V = 1024.31 (17) \text{ Å}^3$	

Data collection

Bruker X8 APEXII CCD areadetector diffractometer 11850 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.151$ S = 1.082546 reflections Z = 4Mo K α radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 296 K $0.32 \times 0.31 \times 0.13 \text{ mm}$

2546 independent reflections 1726 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.049$

137 parameters H-atom parameters constrained
$$\begin{split} &\Delta \rho_{max} = 0.23 \text{ e } \text{\AA}^{-3} \\ &\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3} \end{split}$$

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996), *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *publCIF* (Westrip, 2010).

The authors thank the CNRST of Morocco for making this work possible.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2579).

References

- Abasolo, M. I., Gaozza, C. H. & Fernandez, B. M. J. (1987). *Heterocycl. Chem.* **24**, 1771–1775.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Jampilek, J., Dolezal, M., Kunes, J., Buchta, V. & Kralova, K. (2005). Med. Chem. 1, 591–599.
- Kleim, J. P., Bender, R., Kirsch, R., Meichsner, C., Paessens, A., Rosner, M., Rubsamen Waigmann, H., Kaiser, R., Wichers, M., Schneweis, K. E., Winkler, I. & Riess, G. (1995). *Antimicrob. Agents Chemother.* **39**, 2253– 2257.
- Rodrigo, G. A., Robinshon, A. E., Hedrera, M. E., Kogan, M., Sicardi, S. M. & Fernaandez, B. M. (2002). *Trends Heterocycl. Chem.* 8, 137–143.
- Sashidhara, K. V., Kumar, A., Bhatia, G., Khan, M. M., Khanna, A. K. & Saxena, J. K. (2009). Eur. J. Med. Chem. 44, 1813–1818.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Watkins, A. J., Nicol, G. W. & Shawa, L. J. (2009). Soil Biol. Biochem. 41, 580– 585.

Westrip, S. P. (2010). J. Appl. Cryst. 43. Submitted.

supplementary materials

Acta Cryst. (2010). E66, 01767 [doi:10.1107/81600536810023640]

3-Methyl-1-(prop-2-en-1-yl)quinoxalin-2(1H)-one

Y. Ramli, R. Slimani, H. Zouihri, S. Lazar and E. M. Essassi

Comment

Quinoxaline derivatives are a very important class of nitrogen-containing compounds and have been widely used in dyes, pharmaceuticals and electrical/photochemical materials. Quinoxaline ring moiety constitute part of the chemical structures of various antibiotics such as Echinomycin, Levomycin and Actinoleutin that are known to inhibit growth of gram positive bacteria and are active against various transplantable tumors.

Quinoxaline derivatives were found to exhibit antimicrobial [Kleim *et al.* 1995], antitumor [Abasolo *et al.* 1987], and antituberculous activity [Rodrigo *et al.*2002]. They, also, exhibit interesting antifungal, herbicidal, Antidyslipidemic and antioxidative activities of quinoxaline derivatives, see: (Jampilek *et al.* 2005, Sashidhara *et al.* 2009, Watkins *et al.* 2009).

The dihedral angle between the quinoxaline and propenyl planes is 82.1 (2) (Fig. 1). Bond lengths and angles in title molecule are normal (Allen *et al.*, 1987). The crystal packing is stabilized by offset π - π stacking between the quinoxalin rings.

Experimental

To a solution of 3-methylquinoxali-2(1H)-one (1 g) in 20 ml of dimethylformamide was added allylchloride (0.85 ml),K2CO3 (0.95 g) and catalytic amont of tetrabutylammonium bromide. The mixture was stirred at room temperature for 24 h. Then the solvent was remdove under reduce pressure, the residue was cristallized in ethanol to afford the product.

Refinement

Although found in a difference map, H atoms were introduced in calculated positions and treated as riding with C—H = 0.96 Å for methyl groups, C—H = 0.93 Å for aromatic and C—H = 0.97 Å for methine with U iso (H) = $1.2U_{eq}$ (aromatic, methine) or U iso (H) = $1.5U_{eq}$ (methyl).

Figures

Fig. 1. : Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2. : Packing view of the crystal structure of the title compound.

3-Methyl-1-(prop-2-en-1-yl)quinoxalin-2(1H)-one

Crystal data

C ₁₂ H ₁₂ N ₂ O	F(000) = 424
$M_r = 200.24$	$D_{\rm x} = 1.298 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/c$	Melting point: 1486 K
Hall symbol: -P 2ybc	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 5.0722 (5) Å	Cell parameters from 2764 reflections
b = 13.4707 (13) Å	$\theta = 2.4 - 27.4^{\circ}$
c = 15.0507 (13) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 95.082 \ (5)^{\circ}$	T = 296 K
$V = 1024.31 (17) \text{ Å}^3$	Block, colourless
Z = 4	$0.32\times0.31\times0.13~mm$

Data collection

Radiation source: fine-focus sealed tube $R_{\text{int}} = 0.049$
graphite $\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$
φ and ω scans $h = -6 \rightarrow 6$
11850 measured reflections $k = 0 \rightarrow 17$
2546 independent reflections $l = 0 \rightarrow 20$

Refinement

Refinement on F^2 Primary atom sit
methodsLeast-squares matrix: fullSecondary atom $R[F^2 > 2\sigma(F^2)] = 0.051$ Hydrogen site lossites $wR(F^2) = 0.151$ H-atom parameterS = 1.08 $w = 1/[\sigma^2(F_o^2) + where P = (F_o^2 + 2546 reflections)$ 137 parameters $\Delta \rho_{max} = 0.23 e^{A}$ 0 restraints $\Delta \rho_{min} = -0.17 e^{-1}$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0723P)^2 + 0.0888P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.23$ e Å⁻³ $\Delta\rho_{min} = -0.17$ e Å⁻³

Special details

Experimental. The data collection nominally covered a sphere of reciprocal space, by a combination of seven sets of exposures; each set had a different φ angle for the crystal and each exposure covered 0.5° in ω and 30 s in time. The crystal-to-detector distance was 37.5 mm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL datawill be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	-0.3390 (2)	0.34712 (9)	0.06022 (9)	0.0657 (4)
N1	-0.0193 (2)	0.29591 (9)	0.16502 (8)	0.0408 (3)
N2	0.1311 (2)	0.49458 (9)	0.18738 (8)	0.0445 (3)
C1	0.2649 (3)	0.41959 (11)	0.23590 (9)	0.0408 (3)
C2	0.4769 (3)	0.44552 (13)	0.29645 (10)	0.0514 (4)
H2	0.5253	0.5119	0.3030	0.062*
C3	0.6150 (3)	0.37488 (15)	0.34638 (11)	0.0589 (5)
Н3	0.7560	0.3931	0.3868	0.071*
C4	0.5434 (3)	0.27599 (15)	0.33625 (11)	0.0579 (5)
H4	0.6364	0.2278	0.3704	0.069*
C5	0.3375 (3)	0.24845 (13)	0.27651 (11)	0.0503 (4)
Н5	0.2932	0.1817	0.2698	0.060*
C6	0.1937 (3)	0.31975 (11)	0.22568 (9)	0.0395 (3)
C7	-0.1541 (3)	0.36731 (11)	0.11482 (10)	0.0441 (4)
C8	-0.0643 (3)	0.47053 (11)	0.13088 (9)	0.0424 (4)
C9	-0.2158 (3)	0.54800 (12)	0.07845 (11)	0.0543 (4)
H9A	-0.3878	0.5548	0.0997	0.081*
H9B	-0.2343	0.5293	0.0167	0.081*
Н9С	-0.1233	0.6101	0.0850	0.081*
C10	-0.1160 (3)	0.19385 (11)	0.15522 (11)	0.0483 (4)
H10A	-0.3032	0.1956	0.1355	0.058*
H10B	-0.0975	0.1621	0.2133	0.058*
C11	0.0207 (3)	0.13211 (13)	0.09201 (12)	0.0578 (5)
H11	-0.0243	0.0652	0.0896	0.069*
C12	0.1942 (4)	0.16040 (15)	0.04015 (13)	0.0669 (5)
H12A	0.2467	0.2265	0.0398	0.080*
H12B	0.2672	0.1147	0.0030	0.080*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0682 (8)	0.0524 (8)	0.0700 (8)	-0.0060 (6)	-0.0296 (7)	0.0027 (6)
0.0443 (6)	0.0358 (7)	0.0413 (6)	-0.0016 (5)	-0.0024 (5)	0.0006 (5)
0.0518 (7)	0.0402 (7)	0.0407 (6)	-0.0005 (5)	-0.0013 (5)	-0.0018 (5)
0.0435 (7)	0.0433 (9)	0.0353 (7)	0.0004 (6)	0.0020 (6)	-0.0008 (6)
0.0527 (9)	0.0550 (10)	0.0452 (8)	-0.0061 (7)	-0.0038 (7)	-0.0033 (7)
0.0527 (9)	0.0755 (13)	0.0458 (9)	-0.0016 (8)	-0.0107 (7)	-0.0006 (8)
0.0592 (10)	0.0648 (12)	0.0474 (9)	0.0098 (8)	-0.0080 (7)	0.0103 (8)
0.0568 (9)	0.0471 (9)	0.0460 (8)	0.0046 (7)	-0.0014 (7)	0.0053 (7)
0.0416 (7)	0.0415 (9)	0.0352 (7)	0.0006 (6)	0.0026 (6)	-0.0005 (6)
0.0464 (8)	0.0423 (9)	0.0420 (8)	0.0003 (6)	-0.0045 (6)	-0.0002 (6)
0.0487 (8)	0.0398 (8)	0.0380 (7)	0.0027 (6)	0.0003 (6)	-0.0005 (6)
0.0653 (10)	0.0439 (9)	0.0518 (9)	0.0069 (7)	-0.0059 (8)	0.0015 (7)
0.0488 (8)	0.0387 (9)	0.0560 (9)	-0.0052 (6)	-0.0032 (7)	0.0022 (7)
0.0625 (10)	0.0455 (10)	0.0633 (10)	-0.0042 (8)	-0.0060 (9)	-0.0077 (8)
0.0696 (11)	0.0701 (13)	0.0602 (11)	-0.0030 (9)	0.0008 (9)	-0.0162 (9)
	U^{11} 0.0682 (8) 0.0443 (6) 0.0518 (7) 0.0435 (7) 0.0527 (9) 0.0527 (9) 0.0592 (10) 0.0568 (9) 0.0416 (7) 0.0464 (8) 0.0487 (8) 0.0487 (8) 0.0653 (10) 0.0488 (8) 0.0625 (10) 0.0696 (11)	U^{11} U^{22} 0.0682 (8) 0.0524 (8) 0.0443 (6) 0.0358 (7) 0.0518 (7) 0.0402 (7) 0.0435 (7) 0.0402 (7) 0.0435 (7) 0.0402 (7) 0.0527 (9) 0.0550 (10) 0.0527 (9) 0.0755 (13) 0.0592 (10) 0.0648 (12) 0.0568 (9) 0.0471 (9) 0.0416 (7) 0.0415 (9) 0.0464 (8) 0.0398 (8) 0.0653 (10) 0.0439 (9) 0.0488 (8) 0.0387 (9) 0.0625 (10) 0.0701 (13)	U^{11} U^{22} U^{33} $0.0682 (8)$ $0.0524 (8)$ $0.0700 (8)$ $0.0443 (6)$ $0.0358 (7)$ $0.0413 (6)$ $0.0518 (7)$ $0.0402 (7)$ $0.0407 (6)$ $0.0435 (7)$ $0.0433 (9)$ $0.0353 (7)$ $0.0527 (9)$ $0.0550 (10)$ $0.0452 (8)$ $0.0527 (9)$ $0.0755 (13)$ $0.0458 (9)$ $0.0592 (10)$ $0.0648 (12)$ $0.0474 (9)$ $0.0568 (9)$ $0.0471 (9)$ $0.0460 (8)$ $0.0416 (7)$ $0.0415 (9)$ $0.0352 (7)$ $0.0464 (8)$ $0.0423 (9)$ $0.0420 (8)$ $0.0487 (8)$ $0.0398 (8)$ $0.0380 (7)$ $0.0653 (10)$ $0.0455 (10)$ $0.0633 (10)$ $0.0625 (10)$ $0.0455 (10)$ $0.0602 (11)$	U^{11} U^{22} U^{33} U^{12} 0.0682 (8)0.0524 (8)0.0700 (8) -0.0060 (6)0.0443 (6)0.0358 (7)0.0413 (6) -0.0016 (5)0.0518 (7)0.0402 (7)0.0407 (6) -0.0005 (5)0.0435 (7)0.0433 (9)0.0353 (7)0.0004 (6)0.0527 (9)0.0550 (10)0.0452 (8) -0.0061 (7)0.0527 (9)0.0755 (13)0.0458 (9) -0.0016 (8)0.0592 (10)0.0648 (12)0.0474 (9)0.0098 (8)0.0568 (9)0.0471 (9)0.0460 (8)0.0046 (7)0.0416 (7)0.0415 (9)0.0352 (7)0.0006 (6)0.0464 (8)0.0423 (9)0.0420 (8)0.0003 (6)0.0487 (8)0.0398 (8)0.0380 (7)0.0027 (6)0.0653 (10)0.0439 (9)0.0518 (9) -0.0052 (6)0.0625 (10)0.0455 (10)0.0633 (10) -0.0042 (8)0.0696 (11)0.0701 (13) 0.0602 (11) -0.0030 (9)	U^{11} U^{22} U^{33} U^{12} U^{13} 0.0682 (8)0.0524 (8)0.0700 (8) -0.0060 (6) -0.0296 (7)0.0443 (6)0.0358 (7)0.0413 (6) -0.0016 (5) -0.0024 (5)0.0518 (7)0.0402 (7)0.0407 (6) -0.0005 (5) -0.0013 (5)0.0435 (7)0.0433 (9)0.0353 (7)0.0004 (6)0.0020 (6)0.0527 (9)0.0550 (10)0.0452 (8) -0.0061 (7) -0.0038 (7)0.0527 (9)0.0755 (13)0.0478 (9) -0.0016 (8) -0.0107 (7)0.0592 (10)0.0648 (12)0.0474 (9)0.0098 (8) -0.0080 (7)0.0568 (9)0.0471 (9)0.0460 (8)0.0046 (7) -0.0014 (7)0.0416 (7)0.0415 (9)0.0352 (7)0.0006 (6)0.0026 (6)0.0464 (8)0.0423 (9)0.0420 (8)0.0003 (6) -0.0045 (6)0.0487 (8)0.0398 (8)0.0380 (7)0.0027 (6)0.0003 (6)0.0488 (8)0.0387 (9)0.0560 (9) -0.0052 (6) -0.0032 (7)0.0625 (10)0.0455 (10)0.0633 (10) -0.0042 (8) -0.0060 (9)0.0696 (11)0.0701 (13)0.0602 (11) -0.0030 (9) 0.0008 (9)

Geometric parameters (Å, °)

O1—C7	1.2215 (18)	C5—C6	1.393 (2)
N1—C7	1.3683 (19)	С5—Н5	0.9300
N1—C6	1.3889 (18)	С7—С8	1.476 (2)
N1—C10	1.4629 (19)	C8—C9	1.482 (2)
N2—C8	1.2887 (18)	С9—Н9А	0.9600
N2—C1	1.3881 (19)	С9—Н9В	0.9600
C1—C2	1.391 (2)	С9—Н9С	0.9600
C1—C6	1.397 (2)	C10-C11	1.481 (2)
С2—С3	1.367 (2)	C10—H10A	0.9700
С2—Н2	0.9300	C10—H10B	0.9700
C3—C4	1.386 (3)	C11—C12	1.285 (3)
С3—Н3	0.9300	C11—H11	0.9300
C4—C5	1.368 (2)	C12—H12A	0.9300
C4—H4	0.9300	C12—H12B	0.9300
C7—N1—C6	121.48 (13)	O1—C7—C8	121.81 (14)
C7—N1—C10	117.26 (12)	N1—C7—C8	116.08 (13)
C6—N1—C10	121.20 (12)	N2	123.57 (13)
C8—N2—C1	118.41 (13)	N2	120.44 (14)
N2	118.39 (14)	С7—С8—С9	115.99 (13)
N2-C1-C6	122.20 (13)	С8—С9—Н9А	109.5
C2—C1—C6	119.41 (14)	С8—С9—Н9В	109.5
C3—C2—C1	120.95 (16)	Н9А—С9—Н9В	109.5
С3—С2—Н2	119.5	С8—С9—Н9С	109.5
С1—С2—Н2	119.5	Н9А—С9—Н9С	109.5
C2—C3—C4	119.49 (15)	Н9В—С9—Н9С	109.5
С2—С3—Н3	120.3	N1-C10-C11	114.87 (13)

supplementary materials

С4—С3—Н3	120.3	N1-C10-H10A	108.6
C5—C4—C3	120.70 (16)	C11-C10-H10A	108.6
C5—C4—H4	119.7	N1-C10-H10B	108.6
C3—C4—H4	119.7	С11—С10—Н10В	108.6
C4—C5—C6	120.41 (16)	H10A-C10-H10B	107.5
С4—С5—Н5	119.8	C12-C11-C10	127.48 (17)
С6—С5—Н5	119.8	C12-C11-H11	116.3
N1—C6—C5	122.71 (14)	C10-C11-H11	116.3
N1—C6—C1	118.25 (13)	C11—C12—H12A	120.0
C5—C6—C1	119.04 (14)	C11—C12—H12B	120.0
O1—C7—N1	122.11 (14)	H12A—C12—H12B	120.0
C12-C11-C10-N1	-6.7 (3)		

Table 1

Offset π - π *stacking between the quinoxaline rings.*

Cg1 is the centroid of ri	ng N1,C6,C1,N2,C8,C7 and Cg2 the c	entroid of ring C1–C6.	
	Centroid-to-centroid(Å)	plane-to-plane(Å)	offset(°)
Cg1–Cg2 ⁱ	3.8832 (9)	3.509	25.4

Symmetry code: (i) -1+x, y, z.

Fig. 1

Fig. 2